Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization
نویسندگان
چکیده
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملGeneralization Bounds for Domain Adaptation
In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. We consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we use the integral probability metric to measure the difference between tw...
متن کاملGeneralization Bounds for Representative Domain Adaptation
In this paper, we propose a novel framework to analyze the theoretical properties of thelearning process for a representative type of domain adaptation, which combines data frommultiple sources and one target (or briefly called representative domain adaptation). Inparticular, we use the integral probability metric to measure the difference between the dis-tributions of two d...
متن کاملA General Regularization Framework for Domain Adaptation
We propose a domain adaptation framework, and formally prove that it generalizes the feature augmentation technique in (Daumé III, 2007) and the multi-task regularization framework in (Evgeniou and Pontil, 2004). We show that our framework is strictly more general than these approaches and allows practitioners to tune hyper-parameters to encourage transfer between close domains and avoid negati...
متن کاملA Unified Framework for Probabilistic Component Analysis
We present a unifying framework which reduces the construction of probabilistic component analysis techniques to a mere selection of the latent neighbourhood, thus providing an elegant and principled framework for creating novel component analysis models as well as constructing probabilistic equivalents of deterministic component analysis methods. Under our framework, we unify many very popular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2017
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2016.2599532